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One vs. Rest

peptide N-glycan peptide and N-glycan combined

GB SVM KNN LDA GB SVM KNN LDA GB SVM KNN LDA

EWS vs. rest 0.86 0.88 0.84 0.83 0.91 0.91 0.91 0.84 0.92 0.94 0.93 0.89

RMS vs. rest 0.86 0.87 0.88 0.79 0.90 0.88 0.88 0.86 0.93 0.95 0.92 0.88

NEC vs. rest 0.84 0.85 0.84 0.81 0.90 0.90 0.88 0.84 0.89 0.93 0.92 0.89

ALL vs. rest 0.92 0.93 0.92 0.89 0.94 0.93 0.93 0.89 0.96 0.97 0.96 0.95

NEPB vs. rest 0.91 0.90 0.91 0.89 0.98 0.97 0.96 0.96 0.98 0.98 0.96 0.97

NEUB vs. rest 0.94 0.94 0.93 0.92 0.97 0.95 0.95 0.94 0.98 0.98 0.97 0.97

One vs. One

peptide N-glycan peptide and N-glycan combined

GB SVM KNN LDA GB SVM KNN LDA GB SVM KNN LDA

EWS vs. RMS 0.84 0.82 0.82 0.77 0.86 0.86 0.84 0.82 0.94 0.95 0.9 0.94

EWS vs. NEC 0.83 0.82 0.85 0.78 0.92 0.93 0.93 0.91 0.93 0.94 0.93 0.94

EWS vs. ALL 0.89 0.84 0.89 0.83 0.96 0.95 0.93 0.94 0.97 0.97 0.95 0.97

EWS vs. NEPB 0.92 0.89 0.92 0.85 0.99 0.99 0.98 0.98 0.99 0.99 0.97 0.99

EWS vs. NEUB 0.86 0.86 0.86 0.76 0.96 0.95 0.96 0.96 0.97 0.98 0.94 0.98

RMS vs. NEC 0.88 0.87 0.88 0.81 0.94 0.94 0.89 0.94 0.95 0.96 0.93 0.96

RMS vs. ALL 0.95 0.93 0.93 0.89 0.98 0.98 0.95 0.96 0.97 0.98 0.95 0.98

RMS vs. NEPB 0.87 0.87 0.87 0.85 0.97 0.95 0.94 0.95 0.97 0.98 0.94 0.98

RMS vs. NEUB 0.9 0.89 0.92 0.79 0.98 0.97 0.95 0.98 0.98 0.97 0.95 0.97

NEC vs. ALL 0.85 0.87 0.88 0.84 0.93 0.92 0.9 0.86 0.94 0.94 0.92 0.95

NEC vs. NEPB 0.88 0.88 0.87 0.83 0.99 0.99 0.98 0.99 0.98 0.99 0.97 0.99

NEC vs. NEUB 0.9 0.89 0.92 0.86 0.98 0.97 0.92 0.96 0.98 0.98 0.94 0.98

ALL vs. NEPB 0.93 0.93 0.92 0.89 0.99 1 0.99 0.99 0.99 1 0.98 1

ALL vs. NEUB 0.95 0.93 0.95 0.89 0.99 0.99 0.98 0.97 1 0.99 0.98 0.99

NEPB vs. NEUB 0.86 0.86 0.88 0.88 0.99 0.98 0.97 0.99 0.99 0.99 0.97 0.99

Conclusion & Outlook
• MALDI-MSI of peptide and N-glycan profi les has potential to assist in the stratifi cation of small blue round cell tumors and therefore 

assist in their classifi cation
• Classifi cation using the combined N-glycan and peptide data demonstrates greater ability to diff erentiate between SBRCT classes than 

by N-glycans or peptides individually

• We are currently in the process of identifying diff erentially expressed peptides (MS/MS)
• Future eff orts aim to signifi cantly increase the number of cases and to include more entities 
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Methods:
SBRCT cases (n = 26) were assembled in a tissue microarray: Ewing sarcoma (EWS, n = 5), rhabdomyosarcoma (RMS, n = 5), neuroendocrine carcinoma (NEC, n = 5), 
acute lymphoblastic leukemia/lymphoma (ALL, n = 5), nephroblastoma (NEPB, n = 3), and neuroblastoma (NEUB n = 3). Every case was represented by 3 to 4 tissue 
cores to account for tumor variability. One TMA section was subjected to on-tissue N-glycosidase F enzymatic digestion, and a second section with trypsin, followed by 
matrix application and measurement on a mass spectrometer (rapifl eX, Bruker)[2],[3]. Afterwards, the sections were H&E stained, digitized and underwent histopathological 
annotation (QuPath, version 0.4.3). 

Data analysis was performed using SCiLS Lab (Bruker, v.2024a), Weave (v.1.0, Aspect Analytics), and Python (v.3.9). Weave was used to co-register all datasets, combining 
the peptide and glycan data into a single dataset for comparison of analytes and histology, and interactive assessment of data analysis. A schematic of the entire workfl ow 
is shown in fi gure 1. 

Classifi cation of data according to the diff erent tumor types was performed on pixel (i.e. spectral) level and as a 10-fold cross-validation, using four diff erent machine 
learning algorithms: gradient boosting (GB), support vector machine (SVM), k-nearest neighbor (KNN), and linear discriminant analysis (LDA). For each of the ten folds 
or splits, 90% of the data was used for algorithm training, with the remaining 10% reserved as a test set. Every iteration yielded statistical scores, the average of them 
resulted in the fi nal scores.

Figure 4: Top: t-SNE plots of peptide (left), N-glycan (center), and combined dataset (right) with 
diff erent color coding of the individual classes. Clear diff erentiation of the respective tumor classes 
is evident, whereby the density and demarcation of the clusters is lowest for the peptides, increases 
signifi cantly for the N-glycans, and is best for the combined dataset.
Bottom: Hierarchical cluster analysis on the z-score normalized data of the peptide (top), N-glycan 
(center), and combined data (bottom). This also reveals a separation of the spectra regarding the 
tumor classes.

Figure 1: Schematic showing workfl ow from sample processing to mass spectrometry imaging data acquisition and data analysis

Table 1: Results of the one vs. rest classifi cation strategy for each individual classifi er.
GB: gradient boosting, SVM: support vector machine, KNN: k-nearest neighbor, LDA: linear discriminant analysis.

Table 2: Results of the one vs. one classifi cation for each individual classifi er
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Results

Figure 3: Weave report showing joint visualization of the MALDI-MSI datasets, H&E microscopy and pathology annotations. This allows visualisation of m/z
localisations and intensities in the tissue relative to SBRCT subtype and tumor regions. N-glycan m/z 1851.893 (red) is highest in tumor regions of subtype 
nephroblastoma (NEPB, annotated in light green), and lowest in acute lymphoblastic leukemia/lymphoma (ALL, annotated in cyan). 

A

B

Figure 2: Diff erent SBRCT types produce diff erent mass spectra. Summary showing average spectra for (A) tryptic peptides and (B) N-glycans for each of 
the six SBRCT types. Inset: colour key for the diff erent SBRCT subtypes.
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Introduction
Small blue round cell tumors (SBRCT) is an umbrella term for diff erent tumor types with similar 
histological presentation that can originate from entirely diff erent tissues. Correct diagnosis is 
crucial as treatment strategies and prognosis vary signifi cantly between tumor entities. However, 
morphological characterization of SBRCT is challenging, and routine immunohistochemistry alone 
is often insuffi  cient to defi ne them. Glycan expression profi les are potentially useful in stratifying 
diff erent tumors as glycosyltransferase enzymatic activity and gene expression are altered in 
tumor development, where aberrant glycosylation is primarily characterized by an elevated 

branching of N-glycans[1]. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry 
imaging (MSI) is a label-free analytical technique to analyze and visualize the spatial distribution 
of diff erent classes of molecules, such as peptides, glycans, lipids, and metabolites. In this study, 
MALDI-MSI was used to profi le tryptic peptides and N-glycans from archival SBRCTs samples. The 
data was used to create classifi cation algorithms to reliably distinguish the diff erent entities and 
to identify discriminatory features between the tumor types.
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