
Conclusion
• As spatial omics is increasingly used to investigate TIME biology, Weave® software addresses the need for spatial omics and spatial 

multi-omics  bioinformatics solutions, as shown via two use cases.
• Overlays of multiple spatial omics datasets from diff erent technologies and vendors can be integrated, enabling direct visual 

comparison with interactive browsing of full resolution images and data analysis results.
• Simultaneous viewing of tissue cohorts, as demonstrated with VST datasets, with complementary data analysis results allows for 

collective data interpretation.
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Spatial data registration and integration 
Our approach for spatial multi-omics data analysis consists of multiple steps. Prior to data analysis, 
metadata labeling of individual section data informs the creation of stacks and helps identify sequences 
of tissue sections where stack creation is feasible. Accurate, non-rigid image registration is then used to 
create a single coordinate system across diff erent measurements that can account for diff erent sections 
or variations in measurement region size. For data that are generated from the same section, Weave’s co-
registration tool can be accurate to the single-cell level (Figure 1). 

Joint visualization of integrated spatial multi-omics 
datasets in a single software 
Communication and visualization of data is via web-based Weave reports, which can be shared via URLs. 
Figure 2 shows two examples of Weave reports displaying the integrated Xenium, COMET and H&E datasets 
for lung cancer samples, and data analysis results (cell segmentation, clustering results). The Xenium and 
COMET datasets with their respective H&E images and data analysis results are overlaid in a single view in 
the Spatial panel. Control of the visualization of the diff erent modalities is via individual dropdown menus 
in the Spatial Layers. Xenium results can be either be visualized as cells or cell contours that expressed 
a gene via the Gene List panel or as transcript spots or density maps via the Transcript spot panel. The 
Spatial panel and relevant data plots (e.g. UMAP scatterplot) can be interactively controlled, allowing for 
zooming, panning, and selection of interesting features.

Multi-sample viewer for Visium datasets 
The Visium Spatial Transcriptomics assay (VST) has been widely adopted as it maps quantitative gene 
expression data to their original location in tissue sections [1]. This has produced demand for software where 
multiple VST datasets can be collectively viewed and analyzed (Figure 4). Weave allows simultaneous viewing 
of a cohort of VST measurements, including integration of complementary data such as bioinformatics 
results (Figure 5). Individual panels can be resized or repositioned according to user preference, e.g. re-
arranging sample grid or resizing the spatial panel in order to concentrate on a specifi c sample.

Correlation analysis of gene transcript and protein expression patterns. 
From the 289 genes targeted with the Xenium, 16 corresponding proteins were targeted using COMET. We 
conducted correlation analysis to identify which transcript-protein pairs have similar spatial expression, and 
if this correlation was aff ected by cell segmentation approach. Table 1 shows the results for the transcript-
protein pairs. Some pairs had high correlation, regardless of cell segmentation (e.g. CDH1/E-cadherin), 
while correlation of a protein markers which refers protein complexes that derive from diff erent genes 
yield variable result (e.g. CD3). 

Validation of  the correlation between COMET-Xenium signal will be addressed in a follow-up study. 

xenium comet correlation 
(comet segmentation)

correlation 
(xenium segmentation)

MSA4A1 CD20 0.53 0.50

FOXP3 FoxP3 0.52 0.45

CD3D + CD3E CD3 0.51 0.44

CDH1 E-Cad 0.50 0.62

CD34 CD34 0.42 0.44

CD3E CD3 0.41 0.35

CD3D CD3 0.41 0.34

CD14 CD14 0.40 0.44

CD8A CD8 0.39 0.34

CD8A + CD8B CD8 0.38 0.33

FCGR3A CD16 0.38 0.47

CD68 CD68 0.37 0.42

KRT15 + KRT7 CK 0.34 0.38

KRT15 CK 0.34 0.44

MKI67 Ki67 0.33 0.33

CD38 CD38 0.31 0.30

CD163 CD163 0.31 0.37

Experimental Data Collection
Spatial multi-omics
Human lung cancer tissue sections were analysed with spatial transcriptomics using a human 
cancer panel targeting 289 genes per the recommended workfl ow (Xenium, 10X Genomics), 
followed by multiplexed immunofl uorescence using a 40-antibody panel (COMET, Lunaphore), and 
then H&E staining that was subsequently digitized using an Axioscan 7 (Zeiss). Cell segmentation 
was performed in two ways: fi rst, using DAPI-based nuclear expansion from 10X Genomics on 
the Xenium data [1]; and second, employing CellSAM, an advanced deep learning-based method 
that incorporates both nuclear (DAPI) and membrane (PanCK) markers from the COMET 
dataset. Correlation between gene expression (transcript count) and protein expression (mean 

Introduction
Spatial omics enables detailed molecular analyses directly from tissue, providing novel 
insights into the tumor immune microenvironment (TIME). As the fi eld matures, users are 
increasingly conducting tissue cohort analysis and/or combining diff erent omics readouts 
to obtain a holistic view of TIME biology. However, spatial omics data analysis presents 
specifi c bioinformatics challenges. In spatial omics, data is typically acquired at diff erent 
spatial resolutions using a variety of platforms, while data volumes and batch eff ects are 
issues for cohort studies. We present Weave®, a cloud- based software that addresses 
the need for spatial omics bioinformatics solutions, enabling effi  cient integration and joint 
visualization of diff erent assays, as demonstrated via two diff erent use-cases.

immunofl uorescence intensity) captured on the aforementioned segmentation boundaries was 
assessed using SciPy [3]. 

Cohort study
Fresh frozen EBV-associated cancer tissue that received anti-PD-1/PD-L1 immunotherapy 
treatment (responder n = 2, non-responder n = 6) were measured via spatial transcriptomics 
following recommended protocols (Visium; version 1, 10X Genomics). Pathology annotation was 
performed in QuPath on the digitized post- Visium H&E-stained sections. Batch correction was 
conducted using diff erent algorithms [4-5].

Results Reading direction

Fig. 3: Joint visualization of transcript-protein pairs with diff erent cell 
segmentation.

A: CDH1 transcripts (red spots) and corresponding protein E-cadherin 
(yellow) had high spatial  correlation, regardless of whether cell 
segmentation approach was via Xenium (green contours) or COMET 
(blue contours). 

B: Protein complexes, e.g. CD3 (white)  have more variable correlations 
with respective genes CD3D (fuschia spots) and CDE (yellow spots), 
regardless of cell segmentation approach. Scale bar is 20 μm.
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Table 1: Correlation of gene transcript-protein expression when using 
COMET-based cell segmentation and Xenium-based cell segmentation.

Fig. 2: Joint visualization of Xenium, COMET and H&E data in a Weave report. A: Screenshot of the starting page for a report featuring two lung cancer 
samples. B: Demonstration of gene-protein pairs. Xenium MKI67 in magma density plot, COMET CK in green, COMET FoxP3 in blue, overlaid onto the 
Xenium DAPI channel.  
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Fig. 1: Example of co-registration accuracy A: H&E of lung cancer biopsy B: DAPI channel from COMET dataset pseudo colored in green/DAPI channel from 
Xenium  dataset pseudo colored in yellow. C: Overlay of the two images. Scale bar is 20 μm.
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Fig. 4: A: The starting view of the software showing all eight samples, 
with the Visium spots overlaid onto respective H&E images. In this 
view, the color of the Visium spots correspond to regions annotated 
by a pathologist. Key to the regions shown in ‘Visium Spot Groups’ 
panel (arrow). B: Intensities for gene expression can be viewed 
collectively such as for KRT13 which is highest in responder samples.
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B Fig. 5: Example of integration of complementary data – batch 
correction scatterplots. A: Diff erent batch correction algorithms were 
applied to the datasets. The resultant UMAP scatterplot for each 
approach can be integrated for interactive investigation. For example, 
Scanorama shows two distinct responder tumor populations (in pink, 
white arrow), while COMBAT indicates what might be a population in 
non-responder tumour (white asterisk). B: Lassoing the populations 
in the scatterplots shows their locations in the samples - the smaller 
responder tumor population is only in one sample (yellow arrow), 
while spots belonging to the non-responder tumour subpopulation 
are mostly in two specifi c samples  (yellow asterisks).
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