
Conclusion
• We demonstrate a multimodal data acquisition workfl ow for combined spatial 

multi-omics of high-grade serous ovarian cancer samples.

• We describe tooling and a cross modality data structure for correlative, diff erential, 
and spatial multimodal data analysis.

• Using cell phenotype information, we found interesting preliminary MS markers.

• We preliminary describe the tumor microenvironment with spatial analysis of tumor 
interface using both cell type and MSI data.
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Joint Visualization of spatial omics HGSC datasets in Weave software 
Weave, a web-based spatial multi-omics visualization software package, enabled direct visual 
comparison of analytes and interactive browsing of data analysis results. Figure 2 is an example showing 
the measurements and associated data analysis results for one of the HGSC samples. In the current 
view, the Spatial panel displays the mIF result showing DAPI (blue), PanCK(green), and Ki67(pink) 
markers highlighting tumor and non-tumor areas, directly compared with cell annotations in the 
segmented bitmask. The cell annotations in the segmented bitmask are shown in the Cell Groupings 
panel. The Expression by Cell Set panel shows the expression of glycan Hex5dHex1HexNAc4 (m/z 
1809.6416) across the diff erent cell types. It is also possible to view the distribution of individual 
metabolites, glycans and peptides in the spatial panel, and the H&E staining. Visualization of the 
diff erent datasets is controlled via the Spatial Layers panel.

Diff erential MSI signals by cell type aggregation
Aggregation of cell type information, as defi ned by the mIF data, allows us to look for tryptic peptide, 
glycan, and/or metabolite signals that are diff erentially expressed in specifi c cell types. For example, glycan 
Hex5dHex1HexNAc4NeuAc2 + 2Na (m/z 2369.8306) is diff erentially expressed in CAFs vs tumor regions. 

Spatial distance based exploration of Tumor-Stroma interface
Spatial distance analysis of mIF data allowed us to visually and quantitatively explore the tumor stroma 
interface by computing cell type density as a function of distance to the interface in both the direction 
of the bulk tumor and the surrounding stroma. Certain cell types like FAP+ CAFs were present at higher 
density in the stroma very close to the tumor compared to more distal areas. 

Correlating molecular readouts
The consolidated data structure created after co-registrations allows comparison across diff erent 
modalities. Figure 3 shows the mean correlations and anti-correlations between a subset of glycan and 
tryptic peptides in MRD+ samples, allowing us to fi nd molecules detected by diff erent sample preparations 
and in separate coordinate systems.

Fig. 2: Screenshot of an interactive report for the single-sample (M1) containing full resolution COMET data, COMET cell segmentation, glycan MSI, peptide 
MSI. metabolite MSI, and aggregate features such as COMET signal per cell and metabolite signal per cell.  In the current fi gure, an overlay of COMET 
fl uorescence intensity images and MSI glycan (Hex5dHex1HexNAc4) aggregated to cells is shown. 

Results Reading direction

Experimental Data Collection
Samples were collected from previously untreated HGSC patients undergoing primary cytoreductive 
surgery, and subsequently classifi ed as MRD+ or MRD- following second look laparoscopy. After 
FFPE processing and histological assessment, 8 samples (4 MRD+, 4 MRD-) were selected for 
analysis. Serial sections for were collected from all blocks. 

mIF was conducted on a COMET (Lunaphore) utilising a 22-plex antibody panel. This panel was used 
for cell phenotyping of 29 diff erent cell populations using hierarchical prior knowledge. Figure 1 
outlines the multimodal-MSI approach, in which MSI-measured sections were analysed sequentially 
for metabolites, glycans, and peptides [1]. For metabolite analysis, 1,5-diaminonaphthalene 
(DAN) matrix was used. For N-glycan imaging, sections underwent PNGase-F digestion, and were 
sprayed with α-cyano-4-hydroxycinnamic acid (CHCA) matrix. For peptide analysis, on-tissue 

tryptic digestion was performed followed by coating with CHCA matrix. All matrix and enzyme 
application were carried out with an HTX M5 Robotic Reagent Sprayer (HTX Technologies).  All 
MSI measurements were conducted on a timsTOF fl eX (Bruker). Afterwards, all sections used for 
MSI were H&E stained and digitized.

An advanced integration pipeline was used to create a common coordinate system and match 
readouts across the measurement stack. This accounted for the diff erent sections and spatial 
resolutions of the assays, enabling integrated analysis of the MSI and mIF data, including spatial 
correlation between analytes across assays, multi-omics tissue segmentation and diff erential 
expression analysis. Fig. 1: Schematic diagram summarizing the multiplexed mass spectrometry imaging workfl ow. After deparaffi  nisation, sections were directly coated 

with DAN matrix for metabolite analysis. After metabolite imaging, the matrix was removed with 100% ethanol, then coated with PNGase-F enzyme and 
incubated in a humidity chamber for in-situ N-glycan release. After PNGase-F digestion, the sections were coated with CHCA matrix. After glycan imaging, 
matrix was again removed with ethanol,  coated with trypsin, incubated in a humidity chamber, and again coated with CHCA. After tryptic peptide image 
acquisition, matrix was removed using ethanol and the sections were H&E stained using standard protocols.
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Fig. 3: Correlation matrix between registered multi-omic MSI data. With this method, we identifi ed the glycan Hex8HexNAc2 having a strong correlation 
with Actin peptide also detected by MSI. a.u. = arbitrary units.

m/z 1743.5859 - Hex8HexNAc2 mz: 1198.7073 - Actin

5% 70%a.u. 10% 70%a.u.

Fig. 5: Spatial analysis on the left showing the interface of tumor and the bulk of the tumor in one sample. Right shows a heatmap where cell type density 
is computed in 5 micron bins within the interface region.

Fig. 4: Automatic means to identify diff erential cross modality analytes across particular cell types. Tumor cells, CAFs and immune cells identifi ed from 
COMET were used to fi nd specifi c glycans, peptides, and metabolites with a diff erential spatial distribution between tumor and CAFs.
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Introduction
Understanding how the abundance, localization, and functional orientation of stromal cells in the 
tumor microenvironment infl uences high-grade serous ovarian cancer (HGSC) malignancy and 
patient survival remains largely unknown. Biomarkers to predict the development of minimal 
residual disease (MRD) or mechanisms of chemoresistance following primary treatment are currently 
unavailable. Spatial multi-omics can reveal insights into the tumor immune microenvironment (TIME). 
We combined multimodal mass spectrometry imaging (MSI) with multiplexed immunofl uorescence 
(mIF), and histology to investigate the cellular and molecular heterogeneity and mechanisms of 
intrinsic chemoresistance of HGSC.
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